Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance
نویسندگان
چکیده
The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.
منابع مشابه
Temporal and Spatial Evolution Characteristics of Disturbance Wave in a Hypersonic Boundary Layer due to Single-Frequency Entropy Disturbance
By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy di...
متن کاملNonequilibrium Real-gas Effects on Disturbance/bow Shock Interaction in Hypersonic Flow past a Cylinder
The interaction of free-stream disturbances and the bow shock wave in hypersonic ow past a blunt leading edge is an important part of hypersonic boundary layer receptivity to free-stream disturbances. It has been shown that, for a perfect gas, the back and forth interaction and reeection of acoustic waves behind the shock greatly amplify the magnitudes of the disturbance waves. The interaction ...
متن کاملHigh-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition
Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies ...
متن کاملAnalytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations
An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...
متن کاملDevelopment of Hypersonic Quiet Tunnels
a = speed of sound e = integrated amplification ratio for a linear instability, usually from location of first instability to transition k = roughness height Mw = Mach number at the nozzle wall, at the boundarylayer edge M1 = Mach number in the freestream N factor = ln A=A0, the linear-theory amplification ratio from onset of instability A0 usually to measured transition A Pmean = mean pitot pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014